Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38432395

RESUMO

INTRODUCTION: Condensin, a family of structural maintenance of chromosome complexes, has been shown to regulate chromosome compaction and segregation during mitosis. NCAPD3, a HEAT-repeat subunit of condensin II, plays a dominant role in condensin-mediated chromosome dynamics but remains unexplored in lymphoma. OBJECTIVES: The study aims to unravel the molecular function and mechanism of NCAPD3 in diffuse large B-cell lymphoma (DLBCL). METHODS: The expression and clinical significance of NCAPD3 were assessed in public database and clinical specimens. Chromosome spreads, co-immunoprecipitation (co-IP), mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) assays were conducted to untangle the role and mechanism of NCAPD3 in DLBCL. RESULTS: NCAPD3 was highly expressed in DLBCL, correlated with poor prognosis. NCAPD3 deficiency impeded cell proliferation, induced apoptosis and increased the chemosensitivity. Instead, NCAPD3 overexpression facilitated cell proliferation. In vivo experiments further indicated targeting NCAPD3 suppressed tumor growth. Noteworthily, NCAPD3 deficiency disturbed the mitosis, triggering the formation of aneuploids. To reveal the function of NCAPD3 in DLBCL, chromosome spreads were conducted, presenting that chromosomes became compact upon NCAPD3 overexpression, instead, loose, twisted and lacking axial rigidity upon NCAPD3 absence. Meanwhile, the classical transcription-activated marker, H3K4 trimethylation, was found globally upregulated after NCAPD3 knockout, suggesting that NCAPD3 might participate in chromatin remodeling and transcription regulation. MS revealed NCAPD3 could interact with transcription factor, TFII I. Further co-IP and ChIP assays verified NCAPD3 could be anchored at the promoter of SIRT1 by TFII I and then supported the transcription of SIRT1 via recognizing H3K9 monomethylation (H3K9me1) on SIRT1 promoter. Function reversion assay verified the oncogenic role of NCAPD3 in DLBCL was partially mediated by SIRT1. CONCLUSION: This study demonstrated that dysregulation of NCAPD3 could disturb chromosome compaction and segregation and regulate the transcription activity of SIRT1 in an H3K9me1-dependent manner, which provided novel insights into targeted strategy for DLBCL.

2.
Chin Med ; 18(1): 150, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957754

RESUMO

BACKGROUND: In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS: C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS: BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS: Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.

3.
Biomater Adv ; 155: 213684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976831

RESUMO

Food safety issues are a major concern in food processing and packaging industries. Food spoilage is caused by microbial contamination, where antimicrobial peptides (APs) provide solutions by eliminating microorganisms. APs such as nisin have been successfully and commonly used in food processing and preservation. Here, we discuss all aspects of the functionalization of APs in food applications. We briefly review the natural sources of APs and their native functions. Recombinant expression of APs in microorganisms and their yields are described. The molecular mechanisms of AP antibacterial action are explained, and this knowledge can further benefit the design of functional APs. We highlight current utilities and challenges for the application of APs in the food industry, and address rational methods for AP design that may overcome current limitations.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Alimentos , Manipulação de Alimentos , Conservação de Alimentos/métodos
4.
Int J Biol Sci ; 19(14): 4627-4643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781035

RESUMO

Genomic instability is a significant driver of cancer. As the sensor of cytosolic DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in regulating anti-tumor immunity and cell death. However, the role and regulatory mechanisms of STING in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we reported that sterile alpha motif and HD domain-containing protein 1 (SAMHD1) deficiency induced STING expression and inhibited tumor growth in DLBCL. High level of SAMHD1 was associated with poor prognosis in DLBCL patients. Down-regulation of SAMHD1 inhibited DLBCL cell proliferation both in vitro and in vivo. Moreover, we found that SAMHD1 deficiency induced DNA damage and promoted the expression of DNA damage adaptor STING. STING overexpression promoted the formation of Caspase 8/RIPK3/ASC, further leading to MLKL phosphorylation, Caspase 3 cleavage, and GSDME cleavage. Up-regulation of necroptotic, apoptotic, and pyroptotic effectors indicated STING-mediated PANoptosis. Finally, we demonstrated that the STING agonist, DMXAA, enhanced the efficacy of a PD-L1 inhibitor in DLBCL. Our findings highlight the important role of STING-mediated PANoptosis in restricting DLBCL progression and provide a potential strategy for enhancing the efficacy of immune checkpoint inhibitor agents in DLBCL.


Assuntos
Antígeno B7-H1 , Linfoma Difuso de Grandes Células B , Proteína 1 com Domínio SAM e Domínio HD , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , DNA/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo
5.
J Adv Res ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37865189

RESUMO

INTRODUCTION: Epigenetic alterations play crucial roles in diffuse large B-cell lymphoma (DLBCL). Disturbances in lipid metabolism contribute to tumor progression. However, studies in epigenetics, especially its critical regulator YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), on lipid metabolism regulation in DLBCL are unidentified. OBJECTIVES: Elucidate the prognostic value and biological functions of YTHDF2 in DLBCL and illuminate the underlying epigenetic regulation mechanism of lipid metabolism by YTHDF2 in DLBCL development. METHODS: The expression and clinical value of YTHDF2 in DLBCL were performed in public databases and clinical specimens. The biological functions of YTHDF2 in DLBCL were determined in vivo and in vitro through overexpression and CRISPR/Cas9-mediated knockout of YTHDF2. RNA sequencing, lipidomics, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation-qPCR, luciferase activity assay, and RNA stability experiments were used to explore the potential mechanism by which YTHDF2 contributed to DLBCL progression. RESULTS: YTHDF2 was highly expressed in DLBCL, and related to poor prognosis. YTHDF2 overexpression exerted a tumor-promoting effect in DLBCL, and knockdown of YTHDF2 restricted DLBCL cell proliferation, arrested cell cycle in the G2/M phase, facilitated apoptosis, and enhanced drug sensitivity to ibrutinib and venetoclax. In addition, YTHDF2 knockout drastically suppressed tumor growth in xenograft DLBCL models. Furthermore, a regulatory role of YTHDF2 in ceramide metabolism was identified in DLBCL cells. Exogenous ceramide effectively inhibited the malignant phenotype of DLBCL cells in vitro. The binding of YTHDF2 to m6A sites on alkaline ceramidase 2 (ACER2) mRNA promoted its stability and expression. Enhanced ACER2 expression hydrolyzed ceramides, disrupting the balance between ceramide and sphingosine-1-phosphate (S1P), activating the ERK and PI3K/AKT pathways, and leading to DLBCL tumorigenesis. CONCLUSION: This study demonstrated that YTHDF2 contributed to the progression of DLBCL by regulating ACER2-mediated ceramide metabolism in an m6A-dependent manner, providing novel insights into targeted therapies.

6.
BMC Cancer ; 23(1): 934, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789275

RESUMO

BACKGROUND: Recent studies have indicated that epigenetic alterations contribute significantly to lymphoma pathogenesis. A type of epigenetic regulation known as histone acetylation plays a crucial role in transcriptional regulation in eukaryotic cells. Specifically, a significant effect of histone acetylation modifications on the abnormal progression and microenvironment of diffuse large B-cell lymphoma (DLBCL) has been observed. METHODS: To provide insight into the significance of histone acetylation-related genes, we developed a HAscore model for analyzing histone acetylation patterns in DLBCL samples. Furthermore, KAT2A, a regulator of histone acetylation, was knocked down in DLBCL cell lines to investigate its role in proliferation, cell cycle, and apoptosis. RESULTS: The HAscore model has been demonstrated to provide insight into the significance of these patterns, showing that patients with a low HAscore have distinct tumor immune microenvironments and poorer prognoses. Besides, KAT2A was identified as a potential biomarker related to immune infiltration and malignant pathways in DLBCL. CONCLUSION: According to these findings, it is evident that the histone acetylation pattern score model is helpful in describing the immune status of DLBCL and that KAT2A may be used as a biomarker for its treatment.


Assuntos
Histonas , Linfoma Difuso de Grandes Células B , Humanos , Histonas/metabolismo , Epigênese Genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Prognóstico , Biomarcadores , Linfoma Difuso de Grandes Células B/patologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
7.
Cell Death Discov ; 9(1): 182, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308557

RESUMO

Metabolic reprogramming is a hallmark of human malignancies. Dysregulation of glutamine metabolism is essential for tumorigenesis, microenvironment remodeling, and therapeutic resistance. Based on the untargeted metabolomics sequencing, we identified that the glutamine metabolic pathway was up-regulated in the serum of patients with primary DLBCL. High levels of glutamine were associated with inferior clinical outcomes, indicative of the prognostic value of glutamine in DLBCL. In contrast, the derivate of glutamine alpha-ketoglutarate (α-KG) was negatively correlated with the invasiveness features of DLBCL patients. Further, we found that treatment with the cell-permeable derivative of α-KG, known as DM-αKG, significantly suppressed tumor growth by inducing apoptosis and non-apoptotic cell death. Accumulation of a-KG promoted oxidative stress in double-hit lymphoma (DHL), which depended on malate dehydrogenase 1 (MDH1)-mediated 2-hydroxyglutarate (2-HG) conversion. High levels of reactive oxygen species (ROS) contributed to ferroptosis induction by promoting lipid peroxidation and TP53 activation. In particular, TP53 overexpression derived from oxidative DNA damage, further leading to the activation of ferroptosis-related pathways. Our study demonstrated the importance of glutamine metabolism in DLBCL progression and highlighted the potential application of α-KG as a novel therapeutic strategy for DHL patients.

8.
Front Nutr ; 10: 1080181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252237

RESUMO

Introduction: Patients with aggressive lymphomas are at high risk of losing body resources, resulting in malnutrition, immunodeficiency and inferior outcomes. Nutritional status is closely associated with survival, but often neglected in the prognostic assessment. This study aimed to explore the significance of nutritional status in extranodal NK/T-cell lymphoma (ENKTL). Methods: Univariate and multivariate Cox regression analyses were conducted to examine the significance of nutritional index on overall survival (OS) and progression-free survival (PFS). A nutrition-incorporated score system was constructed based on the multivariate results, and its calibration, discrimination and clinical utility were tested in the training and validation cohort. Results: Multivariate analysis revealed controlling nutritional status (CONUT) score could independently predict OS (HR 10.247, P=0.001) and PFS (HR 5.587, P=0.001) in addition to prognostic index of natural killer lymphoma plus EBV (PINK-E). Herein, a reformative model, CONUT-PINK-E, was developed and further verified in external validation cohort. CONUT-PINK-E classified patients into three risk grades with significant survival differences (P < 0.001). Compared with the current models, CONUT-PINK-E presented superior discrimination, calibration and clinical benefit. Discussion: In this study, we firstly verified that CONUT score was efficient to screen prognosis-related malnutrition in ENKTL. Moreover, we developed the first nutritional assessment-covered scoring system, CONUT-PINK-E, which might be a promising tool to provide references for clinical decision-making of ENKTL patients.

9.
Front Mol Neurosci ; 16: 1166875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187956

RESUMO

Background: Intracerebral hemorrhage (ICH) is a severe subtype of stroke lacking effective pharmacological targets. Long noncoding RNA (lncRNA) has been confirmed to participate in the pathophysiological progress of various neurological disorders. However, how lncRNA affects ICH outcomes in the acute phase is not completely clear. In this study, we aimed to reveal the relationship of lncRNA-miRNA-mRNA following ICH. Method: We conducted the autologous blood injection ICH model and extracted total RNAs on day 7. Microarray scanning was used to obtain mRNA and lncRNA profiles, which were validated by RT-qPCR. GO/KEGG analysis of differentially expressed mRNAs was performed using the Metascape platform. We calculated the Pearson correlation coefficients (PCCs) of lncRNA-mRNA for co-expression network construction. A competitive endogenous (Ce-RNA) network was established based on DIANALncBase and miRDB database. Finally, the Ce-RNA network was visualized and analyzed by Cytoscape. Results: In total, 570 differentially expressed mRNAs and 313 differentially expressed lncRNAs were identified (FC ≥ 2 and value of p <0.05). The function of differentially expressed mRNAs was mainly enriched in immune response, inflammation, apoptosis, ferroptosis, and other typical pathways. The lncRNA-mRNA co-expression network contained 57 nodes (21 lncRNAs and 36 mRNAs) and 38 lncRNA-mRNA pairs. The ce-RNA network was generated with 303 nodes (29 lncRNAs, 163 mRNAs, and 111 miRNAs) and 906 edges. Three hub clusters were selected to indicate the most significant lncRNA-miRNA-mRNA interactions. Conclusion: Our study suggests that the top differentially expressed RNA molecules may be the biomarker of acute ICH. Furthermore, the hub lncRNA-mRNA pairs and lncRNA-miRNA-mRNA correlations may provide new clues for ICH treatment.

10.
BMC Cancer ; 23(1): 372, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095455

RESUMO

BACKGROUND: As an essential regulator of type I interferon (IFN) response, TMEM173 participates in immune regulation and cell death induction. In recent studies, activation of TMEM173 has been regarded as a promising strategy for cancer immunotherapy. However, transcriptomic features of TMEM173 in B-cell acute lymphoblastic leukemia (B-ALL) remain elusive. METHODS: Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were applied to determine the mRNA and protein levels of TMEM173 in peripheral blood mononuclear cells (PBMCs). TMEM173 mutation status was assessed by Sanger sequencing. Single-cell RNA sequencing (scRNA-seq) analysis was performed to explore the expression of TMEM173 in different types of bone marrow (BM) cells. RESULTS: The mRNA and protein levels of TMEM173 were increased in PBMCs from B-ALL patients. Besides, frameshift mutation was presented in TMEM173 sequences of 2 B-ALL patients. ScRNA-seq analysis identified the specific transcriptome profiles of TMEM173 in the BM of high-risk B-ALL patients. Specifically, expression levels of TMEM173 in granulocytes, progenitor cells, mast cells, and plasmacytoid dendritic cells (pDCs) were higher than that in B cells, T cells, natural killer (NK) cells, and dendritic cells (DCs). Subset analysis further revealed that TMEM173 and pyroptosis effector gasdermin D (GSDMD) restrained in precursor-B (pre-B) cells with proliferative features, which expressed nuclear factor kappa-B (NF-κB), CD19, and Bruton's tyrosine kinase (BTK) during the progression of B-ALL. In addition, TMEM173 was associated with the functional activation of NK cells and DCs in B-ALL. CONCLUSIONS: Our findings provide insights into the transcriptomic features of TMEM173 in the BM of high-risk B-ALL patients. Targeted activation of TMEM173 in specific cells might provide new therapeutic strategies for B-ALL patients.


Assuntos
Leucócitos Mononucleares , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Análise da Expressão Gênica de Célula Única , Células Matadoras Naturais , NF-kappa B/genética , RNA Mensageiro/genética , Transcriptoma , Análise de Célula Única
11.
Cell Mol Biol Lett ; 28(1): 32, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076815

RESUMO

BACKGROUND: N6-methyladenosine (m6A) has been shown to participate in various essential biological processes by regulating the level of target genes. However, the function of m6A modification mediated by KIAA1429 [alias virus-like m6A methyltransferase-associated protein (VIRMA)] during the progression of diffuse large B-cell lymphoma (DLBCL) remains undefined. METHODS: The expression and clinical significance of KIAA1429 were verified by our clinical data. CRISPR/Cas9 mediated KIAA1429 deletion, and CRISPR/dCas9-VP64 for activating endogenous KIAA1429 was used to evaluate its biological function. RNA sequencing (RNA-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA immunoprecipitation (RIP) assays, luciferase activity assay, RNA stability experiments, and co-immunoprecipitation were performed to investigate the regulatory mechanism of KIAA1429 in DLBCL. Tumor xenograft models were established for in vivo experiments. RESULTS: Dysregulated expression of m6A regulators was observed, and a novel predictive model based on m6A score was established in DLBCL. Additionally, elevated KIAA1429 expression was associated with poor prognosis of patients with DLBCL. Knockout of KIAA1429 repressed DLBCL cell proliferation, facilitated cell cycle arrest in the G2/M phase, induced apoptosis in vitro, and inhibited tumor growth in vivo. Furthermore, carbohydrate sulfotransferase 11 (CHST11) was identified as a downstream target of KIAA1429, which mediated m6A modification of CHST11 mRNA and then recruited YTHDF2 for reducing CHST11 stability and expression. Inhibition of CHST11 diminished MOB1B expression, resulting in inactivation of Hippo-YAP signaling, reprogramming the expression of Hippo target genes. CONCLUSIONS: Our results revealed a new mechanism by which the Hippo-YAP pathway in DLBCL is inactivated by KIAA1429/YTHDF2-coupled epitranscriptional repression of CHST11, highlighting the potential of KIAA1429 as a novel predictive biomarker and therapeutic target for DLBCL progression.


Assuntos
Linfoma Difuso de Grandes Células B , Metiltransferases , Humanos , Metiltransferases/genética , Biomarcadores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA , Linfoma Difuso de Grandes Células B/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Sulfotransferases/genética , Sulfotransferases/metabolismo
12.
Cell Death Discov ; 9(1): 39, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725845

RESUMO

Prostaglandin D2 (PGD2), an arachidonic acid metabolite, has been implicated in allergic responses, parasitic infection and tumor development. The biological functions and molecular mechanisms of PGD2 in diffuse large B-cell lymphoma (DLBCL) are still undefined. In this study, we firstly found the high concentration of serum PGD2 and low expression of PGD2 receptor CRTH2 in DLBCL, which were associated with clinical features and prognosis of DLBCL patients. Interestingly, different concentration of PGD2 displayed divergent effects on DLBCL progression. Low-concentration PGD2 promoted cell growth through binding to CRTH2 while high-concentration PGD2 inhibited it via regulating cell proliferation, apoptosis, cell cycle, and invasion. Besides, high-concentration PGD2 could induce ROS-mediated DNA damage and enhance the cytotoxicity of adriamycin, bendamustine and venetoclax. Furthermore, HDAC inhibitors, vorinostat (SAHA) and panobinostat (LBH589) regulated CRTH2 expression and PGD2 production, and CRTH2 inhibitor AZD1981 and high-concentration PGD2 enhanced their anti-tumor effects in DLBCL. Altogether, our findings demonstrated PGD2 and CRTH2 as novel prognostic biomarkers and therapeutic targets in DLBCL, and highlighted the potency of high-concentration PGD2 as a promising therapeutic strategy for DLBCL patients.

13.
Clin Exp Med ; 23(6): 2601-2617, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36682001

RESUMO

Diffuse large B cell lymphoma (DLBCL) is a usual-seen hematological malignant tumor possessing molecular and genetic heterogeneity. Ferroptosis induction has been increasingly acknowledged to be an advantageous therapeutic method in tumor treatment by triggering cell death of tumor cells. However, studies on the function of ferroptosis in DLBCL remain scarce, especially the interaction with the tumor immune microenvironment (TIME). The clinical and biological functions of ferroptosis-related genes in DLBCL were still warranted to be explored. A ferroptosis-related risk model was constructed, followed by functional enrichment analyses and evaluation of immune profile. Quantitative real-time PCR, western blotting, and immunohistochemistry were conducted to examine the RNA and protein levels. Dysregulated expression of the major ferroptosis-related genes was found in DLBCL. A prognostic risk model based on 10 ferroptosis-related genes was constructed. The risk score served as an independent prognostic indicator for DLBCL patients in univariate and multivariate Cox regression analysis. Patients with low-risk scores presented a more favorable prognosis. Functional enrichment analysis revealed that immune-related pathways were significantly enriched, and the high-risk group exhibited less immunocyte infiltration, lower immunoscore, and downregulated PD-L1 expression relative to the low-risk group. Two molecular subtypes were determined through consensus clustering of the expression of ferroptosis-related genes. Cluster 1 was relevant to favorable prognosis, higher immunoscore, and elevated PD-L1 expression. More importantly, STEAP3 was screened as a reliable biomarker for DLBCL, and its enhanced expression levels of mRNA and protein were verified in public databases and clinical specimens. Our study demonstrated the crucial role of ferroptosis-related genes including STEAP3 in the TIME of DLBCL and identified promising novel molecular targets for DLBCL treatment.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Antígeno B7-H1/genética , Ferroptose/genética , Linfoma Difuso de Grandes Células B/genética , Fatores de Risco , Western Blotting , Prognóstico , Microambiente Tumoral
14.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676320

RESUMO

Recycled powder (RP) serves as a potential and prospective substitute for cementitious materials in concrete. The compressive strength of RP mortar is a pivotal factor affecting the mechanical properties of RP concrete. The application of machine learning (ML) approaches in the engineering problems, particularly for predicting the mechanical properties of construction materials, leads to high prediction accuracy and low experimental costs. In this study, 204 groups of RP mortar compression experimental data are collected from the literature to establish a dataset for ML, including 163 groups in the training set and 41 groups in the test set. Four ensemble ML models, namely eXtreme Gradient-Boosting (XGBoost), Random Forest (RF), Light Gradient-Boosting Machine (LightGBM) and Adaptive Boosting (AdaBoost), were selected to predict the compressive strength of RP mortar. The comparative results demonstrate that XGBoost has the highest prediction accuracy when the a10-index, MAE, RMSE and R2 of the training set are 0.926, 1.596, 2.155 and 0.950 and the a10-index, MAE, RMSE and R2 of the test set are 0.659, 3.182, 4.285 and 0.842, respectively. SHapley Additive exPlanation (SHAP) is adopted to interpret the prediction process of XGBoost and explain the influence of influencing factors on the compressive strength of RP mortar. According to the importance of influencing factors, the order is the mass replacement rate of RP, the size of RP, the kind of RP and the water binder ratio of RP. The compressive strength of RP mortar decreases with the increase in the RP mass replacement rate. The compressive strength of RBP mortar is slightly higher than that of RCP mortar. Machine learning technologies will benefit the construction industry by facilitating the rapid and cost-effective evaluation of RP material properties.

15.
Cardiovasc Ther ; 2022: 6442122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186487

RESUMO

Background: Oral iron supplement is commonly prescribed to heart failure patients with iron deficiency. However, the effects of oral iron for heart failure remain controversial. This study included randomized controlled trials (RCTs) for meta-analysis to evaluate the effects of oral iron for heart failure patients. Methods: Nine databases (The Cochrane Library, Embase, PubMed, CINAHL, Web of science, CNKI, SinoMed, VIP, and Wanfang) were searched for RCTs of oral iron for heart failure from inception to October 2021. The effects were assessed with a meta-analysis using Revman 5.3 software. The trial sequential analysis was performed by TSA 0.9.5.10 beta software. The risk of bias of trials was evaluated via Risk of Bias tool. The evidence quality was assessed through GRADE tool. Results: Four studies including 582 patients with heart failure and iron deficiency were enrolled. The results indicated that oral iron treatment could improve left ventricular ejection fraction (LVEF, MD = 1.52%, 95% CI: 0.69 to 2.36, P = 0.0003) and serum ferritin (MD = 1.64, 95% CI: 0.26 to 3.02, P = 0.02). However, there was no between-group difference in the 6-minute walk distances (6MWT), N terminal pro B type natriuretic peptide (NT-proBNP) or hemoglobin level when compared with control group. Subgroup analyses revealed that the effects of oral iron on 6 MWT and serum ferritin could not be affected by duration and frequency of oral iron uptakes. In trial sequential analysis of LVEF and serum ferritin, the Z-curves crossed the traditional boundary and trail sequential monitoring boundary but did not reach the required information size. Conclusion: This analysis showed that oral iron could improve cardiac function measured by LVEF, and iron stores measured serum ferritin, but lack of effect on exercise capacity measured by 6 MWT, and iron stores measured by hemoglobin. Given the overall poor methodological quality and evidence quality, these findings should be treated cautiously.


Assuntos
Insuficiência Cardíaca , Deficiências de Ferro , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Ferro/efeitos adversos , Peptídeo Natriurético Encefálico , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico
16.
Front Cardiovasc Med ; 9: 834121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571179

RESUMO

Our previous study has reported that the plasma microRNA-505 (miR-505) is elevated in hypertensive patients. However, the pathophysiological significance of miR-505 in hypertension remains to be elucidated. Hypertension is not only a vascular disorder, but also an inflammatory condition. The current study therefore aims to further investigate the pathophysiological implications of miR-505 in hypertension-associated vascular and inflammatory changes. In vivo experiments reveal that the plasma level of miR-505 is elevated in spontaneously hypertensive rats and angiotensin II-infused mice. In addition, miR-505 agomir treatment results in elevated blood pressure, endothelial dysfunction, increased vascular expression of inflammatory genes and renal inflammatory injuries as well as pre-activation of PBMCs in mice. In vitro experiments further demonstrate that miR-505 agomir increases the expression of IL1B and TNFA, whereas miR-505 antagomir attenuates TNF-α-induced upregulation of IL1B and TNFA in endothelial cells, HUVECs. In addition, miR-505 modulates the levels of endothelial activation markers VCAM1 and E-selectin in HUVECs as well as the adhesion of THP-1 monocytes to HUVECs. Lastly, the plasma level of miR-505 is positively correlated with systolic blood pressure and the level of C-reactive protein in human subjects. Our work links for the first time miR-505 to endothelial dysfunction and inflammation under hypertensive conditions, supporting the translational value of miR-505 in prognosticating hypertension-associated endothelial impairment and inflammatory injuries in target organs such as the vessels and kidneys.

17.
Cell Death Differ ; 29(3): 642-656, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743203

RESUMO

Glycoprotein prostaglandin D2 synthase (PTGDS) is a member of the lipocalin superfamily and plays dual roles in prostaglandins metabolism and lipid transport. PTGDS has been involved in various cellular processes including the tumorigenesis of solid tumors, yet its role in carcinogenesis is contradictory and the significance of PTGDS in hematological malignancies is ill-defined. Here, we aimed to explore the expression and function of PTGDS in diffuse large B-cell lymphoma (DLBCL), especially the potential role of PTGDS inhibitor, AT56, in lymphoma therapy. Remarkable high expression of PTGDS was found in DLBCL, which was significantly correlated with poor prognosis. PTGDS overexpression and rhPTGDS were found to promote cell proliferation. Besides, in vitro and in vivo studies indicated that PTGDS knockdown and AT56 treatment exerted an anti-tumor effect by regulating cell viability, proliferation, apoptosis, cell cycle, and invasion, and enhanced the drug sensitivity to adriamycin and bendamustine through promoting DNA damage. Moreover, the co-immunoprecipitation-based mass spectrum identified the interaction between PTGDS and MYH9, which was found to promote DLBCL progression. PTGDS inhibition led to reduced expression of MYH9, and then declined activation of the Wnt-ß-catenin-STAT3 pathway through influencing the ubiquitination and degradation of GSK3-ß in DLBCL. The rescue experiment demonstrated that PTGDS exerted an oncogenic role through regulating MYH9 and then the Wnt-ß-catenin-STAT3 pathway. Based on point mutation of glycosylation sites, we confirmed the N-glycosylation of PTGDS in Asn51 and Asn78 and found that abnormal glycosylation of PTGDS resulted in its nuclear translocation, prolonged half-life, and enhanced cell proliferation. Collectively, our findings identified for the first time that glycoprotein PTGDS promoted tumorigenesis of DLBCL through MYH9-mediated regulation of Wnt-ß-catenin-STAT3 signaling, and highlighted the potential role of AT56 as a novel therapeutic strategy for DLBCL treatment.


Assuntos
Oxirredutases Intramoleculares/metabolismo , Linfoma Difuso de Grandes Células B , beta Catenina , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Lipocalinas/genética , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Linfoma Difuso de Grandes Células B/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
18.
Front Pharmacol ; 12: 695530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434107

RESUMO

Pinoresinol (PINL) and pinoresinol diglucoside (PDG), two natural lignans found in Eucommia ulmoides Oliv. (Duzhong), have several pharmacological activities. However, there is no report available on their absorption, distribution, metabolism, and elimination (ADME) properties. Given the possible wide spectrum of their application in therapeutic areas, this area should be investigated. This work studied the in vitro ADME properties of PDG and PINL, including their kinetic solubility, permeability across monolayer cells (PAMPA), protein binding, and metabolic stabilities in liver microsomes. The in vivo pharmacokinetic study and in vitro vasorelaxant effects on isolated phenylephrine-induced aortic rings of PINL and PDG were also investigated. It was found that both of their kinetic solubility in PBS (pH 7.4) was greater than 100 µM, indicating that they are both soluble compounds. The permeability investigations (P eff ) by PAMPA indicated that PINL had higher permeability than PDG (p < 0.05). Both components represented moderate plasma protein binding activities (average binding rate in human plasma: PINL 89.03%, PDG 45.21%) and low metabolic rate (t 1/2 in human liver microsome: PINL 1509.5 min, PDG 1004.8 min). Furthermore, the results of pharmacokinetic studies indicated that PINL might be eliminated less quickly than PDG from the rat plasma, and its cumulative urinary excretion was much lower than that of PDG. The phenylephrine-induced aortic rings demonstrated concentration-dependent vasorelaxation in PDG, PINL, or their combination group. The vasorelaxant effects of PINL were more obvious than those of PDG, whereas the vasorelaxant effect of the combinations was significantly better than that of the single component (p < 0.05). The similarity or difference between PINL and its diglucoside in these pharmaceutical aspects may offer valuable insights into the further exploration of lignans and might contribute to relevant studies involving natural products with similar molecular structure and their glucosides.

19.
Materials (Basel) ; 14(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205493

RESUMO

Aiming at the problems of a complex structure or poor controllability of the existing bearing preload control devices, a method of self-regulation via a negative Poisson's ratio (NPR) spacer is proposed. Firstly, the principle of preload automatic adjustment at the bearing operation was introduced and the NPRs with three types of cell structures were analyzed. Furthermore, a thermo-mechanical coupling analysis model of the NPR spacer was established and the deformation and force output characteristics of the NPR spacer were studied and experimentally verified. It is found that the concave hexagonal cell structure has the optimal deformation characteristics for bearing preload adjustment. When the temperature is considered, the absolute value of Poisson's ratio of the NPR spacer decreases as the speed increases and the elongation of the NPR spacer and the output forces are much larger than those without temperature consideration. With the increase in temperature or rotating speed, the axial elongation and output forces of the NPR spacer increases while the effect of temperature is relatively larger.

20.
Cancer Cell Int ; 21(1): 348, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225710

RESUMO

BACKGROUND: Mature T-cell lymphomas (MTCLs), a group of diseases with high aggressiveness and vulnerable prognosis, lack for the accurate prognostic stratification systems at present. Novel prognostic markers and models are urgently demanded. Aberrant lipid metabolism is closely related to the tumor progression but its prognostic significance in MTCLs remains unexplored. This study aims to investigate the relationship between dysregulated lipid metabolism and survival prognosis of MTCLs and establish a novel and well-performed prognostic scoring system for MTCL patients. METHODS: A total of 173 treatment-naive patients were enrolled in this study. Univariate and multivariate Cox regression analysis were performed to assess the prognostic significance of serum lipid profiles and screen out independent prognostic factors, which constituted a novel prognostic model for MTCLs. The performance of the novel model was assessed in the training and validation cohort, respectively, by examining its calibration, discrimination and clinical utility. RESULTS: Among the 173 included patients, 115 patients (01/2006-12/2016) constituted the training cohort and 58 patients (01/2017-06/2020) formed the validation cohort. Univariate analysis revealed declined total cholesterol (TC, P = 0.000), high-density lipoprotein cholesterol (HDL-C, P = 0.000) and increased triglycerides (TG, P = 0.000) correlated to inferior survival outcomes. Multivariate analysis revealed extranodal involved sites ≥ 2 (hazard ratio [HR]: 2.439; P = 0.036), ß2-MG ≥ 3 mg/L (HR: 4.165; P = 0.003) and TC < 3.58 mmol/L (HR: 3.338; P = 0.000) were independent predictors. Subsequently, a novel prognostic model, EnBC score, was constructed with these three factors. Harrell's C-index of the model in the training and validation cohort was 0.840 (95% CI 0.810-0.870) and 0.882 (95% CI 0.822-0.942), respectively, with well-fitted calibration curves. The model divided patients into four risk groups with distinct OS [median OS: not available (NA) vs. NA vs. 14.0 vs. 4.0 months, P < 0.0001] and PFS (median PFS: 84.0 vs. 19.0 vs. 8.0 vs. 1.5 months, P < 0.0001). Time-dependent receiver operating characteristic curve and decision curve analysis  further revealed that EnBC score provided higher diagnostic capacity and clinical benefit, compared with International Prognostic Index (IPI). CONCLUSION: Firstly, abnormal serum lipid metabolism was demonstrated significantly related to the survival of MTCL patients. Furthermore, a lipid-covered prognostic scoring system was established and performed well in stratifying patients with MTCLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...